Peripheral Nervous System Neuropathology and Progressive Sensory Impairments in a Mouse Model of Mucopolysaccharidosis IIIB
نویسندگان
چکیده
The lysosomal storage pathology in Mucopolysaccharidosis (MPS) IIIB manifests in cells of virtually all organs. However, it is the profound role of the neurological pathology that leads to morbidity and mortality in this disease, and has been the major challenge to developing therapies. To date, MPS IIIB neuropathologic and therapeutic studies have focused predominantly on changes in the central nervous system (CNS), especially in the brain, and little is known about the disease pathology in the peripheral nervous system (PNS). This study demonstrates characteristic lysosomal storage pathology in dorsal root ganglia affecting neurons, satellite cells (glia) and Schwann cells. Lysosomal storage lesions were also observed in the myoenteric plexus and submucosal plexus, involving enteric neurons with enteric glial activation. Further, MPS IIIB mice developed progressive impairments in sensory functions, with significantly reduced response to pain stimulation that became detectable at 4-5 months of age as the disease progressed. These data demonstrate that MPS IIIB neuropathology manifests not only in the entire CNS but also the PNS, likely affecting both afferent and efferent neural signal transduction. This study also suggests that therapeutic development for MPS IIIB may benefit from targeting the entire nervous system.
منابع مشابه
Amyloidosis, Synucleinopathy, and Prion Encephalopathy in a Neuropathic Lysosomal Storage Disease: The CNS-Biomarker Potential of Peripheral Blood
Mucopolysaccharidosis (MPS) IIIB is a devastating neuropathic lysosomal storage disease with complex pathology. This study identifies molecular signatures in peripheral blood that may be relevant to MPS IIIB pathogenesis using a mouse model. Genome-wide gene expression microarrays on pooled RNAs showed dysregulation of 2,802 transcripts in blood from MPS IIIB mice, reflecting pathological compl...
متن کاملMacrophage enzyme and reduced inflammation drive brain correction of mucopolysaccharidosis IIIB by stem cell gene therapy.
Mucopolysaccharidosis IIIB is a paediatric lysosomal storage disease caused by deficiency of the enzyme α-N-acetylglucosaminidase (NAGLU), involved in the degradation of the glycosaminoglycan heparan sulphate. Absence of NAGLU leads to accumulation of partially degraded heparan sulphate within lysosomes and the extracellular matrix, giving rise to severe CNS degeneration with progressive cognit...
متن کاملNeuropathology in Mouse Models of Mucopolysaccharidosis Type I, IIIA and IIIB
Mucopolysaccharide diseases (MPS) are caused by deficiency of glycosaminoglycan (GAG) degrading enzymes, leading to GAG accumulation. Neurodegenerative MPS diseases exhibit cognitive decline, behavioural problems and shortened lifespan. We have characterised neuropathological changes in mouse models of MPSI, IIIA and IIIB to provide a better understanding of these events.Wild-type (WT), MPSI, I...
متن کاملElectrophysiological and Histological Characterization of Rod-Cone Retinal Degeneration and Microglia Activation in a Mouse Model of Mucopolysaccharidosis Type IIIB
Sanfilippo syndrome Type B or Mucopolysaccharidosis IIIB (MPS IIIB) is a neurodegenerative autosomal recessive lysosomal storage disorder in which patients suffer severe vision loss from associated retinopathy. Here we sought to study the underlying retinal functional and morphological changes associated with MPS IIIB disease progression using the established model of MPS IIIB, the B6.129S6-Nag...
متن کاملCentral nervous system delivery of helper-dependent canine adenovirus corrects neuropathology and behavior in mucopolysaccharidosis type VII mice.
Canine adenovirus type 2 vectors (CAV-2) are promising tools to treat global central nervous system (CNS) disorders because of their preferential transduction of neurons and efficient retrograde axonal transport. Here we tested the potential of a helper-dependent CAV-2 vector expressing β-glucuronidase (HD-RIGIE) in a mouse model of mucopolysaccharidosis type VII (MPS VII), a lysosomal storage ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012